Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Genetic manipulation of putrescine biosynthesis reprograms the cellular transcriptome and the metabolome.

Identifieur interne : 001866 ( Main/Exploration ); précédent : 001865; suivant : 001867

Genetic manipulation of putrescine biosynthesis reprograms the cellular transcriptome and the metabolome.

Auteurs : Andrew F. Page [États-Unis] ; Leland J. Cseke [États-Unis] ; Rakesh Minocha [États-Unis] ; Swathi A. Turlapati [États-Unis] ; Gopi K. Podila [États-Unis] ; Alexander Ulanov [États-Unis] ; Zhong Li [États-Unis] ; Subhash C. Minocha [États-Unis]

Source :

RBID : pubmed:27188293

Descripteurs français

English descriptors

Abstract

BACKGROUND

With the increasing interest in metabolic engineering of plants using genetic manipulation and gene editing technologies to enhance growth, nutritional value and environmental adaptation, a major concern is the potential of undesirable broad and distant effects of manipulating the target gene or metabolic step in the resulting plant. A comprehensive transcriptomic and metabolomic analysis of the product may shed some useful light in this regard. The present study used these two techniques with plant cell cultures to analyze the effects of genetic manipulation of a single step in the biosynthesis of polyamines because of their well-known roles in plant growth, development and stress responses.

RESULTS

The transcriptomes and metabolomes of a control and a high putrescine (HP) producing cell line of poplar (Populus nigra x maximowiczii) were compared using microarrays and GC/MS. The HP cells expressed an ornithine decarboxylase transgene and accumulated several-fold higher concentrations of putrescine, with only small changes in spermidine and spermine. The results show that up-regulation of a single step in the polyamine biosynthetic pathway (i.e. ornithine → putrescine) altered the expression of a broad spectrum of genes; many of which were involved in transcription, translation, membrane transport, osmoregulation, shock/stress/wounding, and cell wall metabolism. More than half of the 200 detected metabolites were significantly altered (p ≤ 0.05) in the HP cells irrespective of sampling date. The most noteworthy differences were in organic acids, carbohydrates and nitrogen-containing metabolites.

CONCLUSIONS

The results provide valuable information about the role of polyamines in regulating nitrogen and carbon use pathways in cell cultures of high putrescine producing transgenic cells of poplar vs. their low putrescine counterparts. The results underscore the complexity of cellular responses to genetic perturbation of a single metabolic step related to nitrogen metabolism in plants. Combined with recent studies from our lab, where we showed that higher putrescine production caused an increased flux of glutamate into ornithine concurrent with enhancement in glutamate production via additional nitrogen and carbon assimilation, the results from this study provide guidance in designing transgenic plants with increased nitrogen use efficiency, especially in plants intended for non-food/feed applications (e.g. increased biomass production for biofuels).


DOI: 10.1186/s12870-016-0796-2
PubMed: 27188293
PubMed Central: PMC4870780


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Genetic manipulation of putrescine biosynthesis reprograms the cellular transcriptome and the metabolome.</title>
<author>
<name sortKey="Page, Andrew F" sort="Page, Andrew F" uniqKey="Page A" first="Andrew F" last="Page">Andrew F. Page</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, University of New Hampshire, Durham, NH, 03824, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, University of New Hampshire, Durham, NH, 03824</wicri:regionArea>
<wicri:noRegion>03824</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cseke, Leland J" sort="Cseke, Leland J" uniqKey="Cseke L" first="Leland J" last="Cseke">Leland J. Cseke</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, AL, 35899, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, AL, 35899</wicri:regionArea>
<wicri:noRegion>35899</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Minocha, Rakesh" sort="Minocha, Rakesh" uniqKey="Minocha R" first="Rakesh" last="Minocha">Rakesh Minocha</name>
<affiliation wicri:level="1">
<nlm:affiliation>USDA Forest Service, Northern Research Station, Durham, NH, 03824, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>USDA Forest Service, Northern Research Station, Durham, NH, 03824</wicri:regionArea>
<wicri:noRegion>03824</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Turlapati, Swathi A" sort="Turlapati, Swathi A" uniqKey="Turlapati S" first="Swathi A" last="Turlapati">Swathi A. Turlapati</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, University of New Hampshire, Durham, NH, 03824, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, University of New Hampshire, Durham, NH, 03824</wicri:regionArea>
<wicri:noRegion>03824</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>USDA Forest Service, Northern Research Station, Durham, NH, 03824, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>USDA Forest Service, Northern Research Station, Durham, NH, 03824</wicri:regionArea>
<wicri:noRegion>03824</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Podila, Gopi K" sort="Podila, Gopi K" uniqKey="Podila G" first="Gopi K" last="Podila">Gopi K. Podila</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, AL, 35899, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, AL, 35899</wicri:regionArea>
<wicri:noRegion>35899</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ulanov, Alexander" sort="Ulanov, Alexander" uniqKey="Ulanov A" first="Alexander" last="Ulanov">Alexander Ulanov</name>
<affiliation wicri:level="1">
<nlm:affiliation>Metabolomics Center, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Champaign, IL, 61801, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Metabolomics Center, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Champaign, IL, 61801</wicri:regionArea>
<wicri:noRegion>61801</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Zhong" sort="Li, Zhong" uniqKey="Li Z" first="Zhong" last="Li">Zhong Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>Metabolomics Center, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Champaign, IL, 61801, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Metabolomics Center, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Champaign, IL, 61801</wicri:regionArea>
<wicri:noRegion>61801</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Minocha, Subhash C" sort="Minocha, Subhash C" uniqKey="Minocha S" first="Subhash C" last="Minocha">Subhash C. Minocha</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, University of New Hampshire, Durham, NH, 03824, USA. sminocha@unh.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, University of New Hampshire, Durham, NH, 03824</wicri:regionArea>
<wicri:noRegion>03824</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27188293</idno>
<idno type="pmid">27188293</idno>
<idno type="doi">10.1186/s12870-016-0796-2</idno>
<idno type="pmc">PMC4870780</idno>
<idno type="wicri:Area/Main/Corpus">001790</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001790</idno>
<idno type="wicri:Area/Main/Curation">001790</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001790</idno>
<idno type="wicri:Area/Main/Exploration">001790</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Genetic manipulation of putrescine biosynthesis reprograms the cellular transcriptome and the metabolome.</title>
<author>
<name sortKey="Page, Andrew F" sort="Page, Andrew F" uniqKey="Page A" first="Andrew F" last="Page">Andrew F. Page</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, University of New Hampshire, Durham, NH, 03824, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, University of New Hampshire, Durham, NH, 03824</wicri:regionArea>
<wicri:noRegion>03824</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cseke, Leland J" sort="Cseke, Leland J" uniqKey="Cseke L" first="Leland J" last="Cseke">Leland J. Cseke</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, AL, 35899, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, AL, 35899</wicri:regionArea>
<wicri:noRegion>35899</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Minocha, Rakesh" sort="Minocha, Rakesh" uniqKey="Minocha R" first="Rakesh" last="Minocha">Rakesh Minocha</name>
<affiliation wicri:level="1">
<nlm:affiliation>USDA Forest Service, Northern Research Station, Durham, NH, 03824, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>USDA Forest Service, Northern Research Station, Durham, NH, 03824</wicri:regionArea>
<wicri:noRegion>03824</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Turlapati, Swathi A" sort="Turlapati, Swathi A" uniqKey="Turlapati S" first="Swathi A" last="Turlapati">Swathi A. Turlapati</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, University of New Hampshire, Durham, NH, 03824, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, University of New Hampshire, Durham, NH, 03824</wicri:regionArea>
<wicri:noRegion>03824</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>USDA Forest Service, Northern Research Station, Durham, NH, 03824, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>USDA Forest Service, Northern Research Station, Durham, NH, 03824</wicri:regionArea>
<wicri:noRegion>03824</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Podila, Gopi K" sort="Podila, Gopi K" uniqKey="Podila G" first="Gopi K" last="Podila">Gopi K. Podila</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, AL, 35899, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, AL, 35899</wicri:regionArea>
<wicri:noRegion>35899</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ulanov, Alexander" sort="Ulanov, Alexander" uniqKey="Ulanov A" first="Alexander" last="Ulanov">Alexander Ulanov</name>
<affiliation wicri:level="1">
<nlm:affiliation>Metabolomics Center, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Champaign, IL, 61801, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Metabolomics Center, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Champaign, IL, 61801</wicri:regionArea>
<wicri:noRegion>61801</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Zhong" sort="Li, Zhong" uniqKey="Li Z" first="Zhong" last="Li">Zhong Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>Metabolomics Center, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Champaign, IL, 61801, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Metabolomics Center, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Champaign, IL, 61801</wicri:regionArea>
<wicri:noRegion>61801</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Minocha, Subhash C" sort="Minocha, Subhash C" uniqKey="Minocha S" first="Subhash C" last="Minocha">Subhash C. Minocha</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, University of New Hampshire, Durham, NH, 03824, USA. sminocha@unh.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, University of New Hampshire, Durham, NH, 03824</wicri:regionArea>
<wicri:noRegion>03824</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC plant biology</title>
<idno type="eISSN">1471-2229</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Gas Chromatography-Mass Spectrometry (MeSH)</term>
<term>Metabolome (genetics)</term>
<term>Ornithine Decarboxylase (genetics)</term>
<term>Ornithine Decarboxylase (metabolism)</term>
<term>Polyamines (metabolism)</term>
<term>Populus (genetics)</term>
<term>Populus (metabolism)</term>
<term>Putrescine (biosynthesis)</term>
<term>Spermidine (metabolism)</term>
<term>Spermine (metabolism)</term>
<term>Transcriptome (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Chromatographie gazeuse-spectrométrie de masse (MeSH)</term>
<term>Métabolome (génétique)</term>
<term>Ornithine decarboxylase (génétique)</term>
<term>Ornithine decarboxylase (métabolisme)</term>
<term>Polyamines (métabolisme)</term>
<term>Populus (génétique)</term>
<term>Populus (métabolisme)</term>
<term>Putrescine (biosynthèse)</term>
<term>Spermidine (métabolisme)</term>
<term>Spermine (métabolisme)</term>
<term>Transcriptome (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Putrescine</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Ornithine Decarboxylase</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Putrescine</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Metabolome</term>
<term>Populus</term>
<term>Transcriptome</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Métabolome</term>
<term>Ornithine decarboxylase</term>
<term>Populus</term>
<term>Transcriptome</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Ornithine Decarboxylase</term>
<term>Polyamines</term>
<term>Populus</term>
<term>Spermidine</term>
<term>Spermine</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Ornithine decarboxylase</term>
<term>Polyamines</term>
<term>Populus</term>
<term>Spermidine</term>
<term>Spermine</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gas Chromatography-Mass Spectrometry</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Chromatographie gazeuse-spectrométrie de masse</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>With the increasing interest in metabolic engineering of plants using genetic manipulation and gene editing technologies to enhance growth, nutritional value and environmental adaptation, a major concern is the potential of undesirable broad and distant effects of manipulating the target gene or metabolic step in the resulting plant. A comprehensive transcriptomic and metabolomic analysis of the product may shed some useful light in this regard. The present study used these two techniques with plant cell cultures to analyze the effects of genetic manipulation of a single step in the biosynthesis of polyamines because of their well-known roles in plant growth, development and stress responses.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>The transcriptomes and metabolomes of a control and a high putrescine (HP) producing cell line of poplar (Populus nigra x maximowiczii) were compared using microarrays and GC/MS. The HP cells expressed an ornithine decarboxylase transgene and accumulated several-fold higher concentrations of putrescine, with only small changes in spermidine and spermine. The results show that up-regulation of a single step in the polyamine biosynthetic pathway (i.e. ornithine → putrescine) altered the expression of a broad spectrum of genes; many of which were involved in transcription, translation, membrane transport, osmoregulation, shock/stress/wounding, and cell wall metabolism. More than half of the 200 detected metabolites were significantly altered (p ≤ 0.05) in the HP cells irrespective of sampling date. The most noteworthy differences were in organic acids, carbohydrates and nitrogen-containing metabolites.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>The results provide valuable information about the role of polyamines in regulating nitrogen and carbon use pathways in cell cultures of high putrescine producing transgenic cells of poplar vs. their low putrescine counterparts. The results underscore the complexity of cellular responses to genetic perturbation of a single metabolic step related to nitrogen metabolism in plants. Combined with recent studies from our lab, where we showed that higher putrescine production caused an increased flux of glutamate into ornithine concurrent with enhancement in glutamate production via additional nitrogen and carbon assimilation, the results from this study provide guidance in designing transgenic plants with increased nitrogen use efficiency, especially in plants intended for non-food/feed applications (e.g. increased biomass production for biofuels).</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27188293</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>09</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2229</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>16</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2016</Year>
<Month>05</Month>
<Day>18</Day>
</PubDate>
</JournalIssue>
<Title>BMC plant biology</Title>
<ISOAbbreviation>BMC Plant Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Genetic manipulation of putrescine biosynthesis reprograms the cellular transcriptome and the metabolome.</ArticleTitle>
<Pagination>
<MedlinePgn>113</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s12870-016-0796-2</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND">With the increasing interest in metabolic engineering of plants using genetic manipulation and gene editing technologies to enhance growth, nutritional value and environmental adaptation, a major concern is the potential of undesirable broad and distant effects of manipulating the target gene or metabolic step in the resulting plant. A comprehensive transcriptomic and metabolomic analysis of the product may shed some useful light in this regard. The present study used these two techniques with plant cell cultures to analyze the effects of genetic manipulation of a single step in the biosynthesis of polyamines because of their well-known roles in plant growth, development and stress responses.</AbstractText>
<AbstractText Label="RESULTS">The transcriptomes and metabolomes of a control and a high putrescine (HP) producing cell line of poplar (Populus nigra x maximowiczii) were compared using microarrays and GC/MS. The HP cells expressed an ornithine decarboxylase transgene and accumulated several-fold higher concentrations of putrescine, with only small changes in spermidine and spermine. The results show that up-regulation of a single step in the polyamine biosynthetic pathway (i.e. ornithine → putrescine) altered the expression of a broad spectrum of genes; many of which were involved in transcription, translation, membrane transport, osmoregulation, shock/stress/wounding, and cell wall metabolism. More than half of the 200 detected metabolites were significantly altered (p ≤ 0.05) in the HP cells irrespective of sampling date. The most noteworthy differences were in organic acids, carbohydrates and nitrogen-containing metabolites.</AbstractText>
<AbstractText Label="CONCLUSIONS">The results provide valuable information about the role of polyamines in regulating nitrogen and carbon use pathways in cell cultures of high putrescine producing transgenic cells of poplar vs. their low putrescine counterparts. The results underscore the complexity of cellular responses to genetic perturbation of a single metabolic step related to nitrogen metabolism in plants. Combined with recent studies from our lab, where we showed that higher putrescine production caused an increased flux of glutamate into ornithine concurrent with enhancement in glutamate production via additional nitrogen and carbon assimilation, the results from this study provide guidance in designing transgenic plants with increased nitrogen use efficiency, especially in plants intended for non-food/feed applications (e.g. increased biomass production for biofuels).</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Page</LastName>
<ForeName>Andrew F</ForeName>
<Initials>AF</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, University of New Hampshire, Durham, NH, 03824, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cseke</LastName>
<ForeName>Leland J</ForeName>
<Initials>LJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, AL, 35899, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Minocha</LastName>
<ForeName>Rakesh</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>USDA Forest Service, Northern Research Station, Durham, NH, 03824, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Turlapati</LastName>
<ForeName>Swathi A</ForeName>
<Initials>SA</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, University of New Hampshire, Durham, NH, 03824, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>USDA Forest Service, Northern Research Station, Durham, NH, 03824, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Podila</LastName>
<ForeName>Gopi K</ForeName>
<Initials>GK</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, AL, 35899, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ulanov</LastName>
<ForeName>Alexander</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Metabolomics Center, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Champaign, IL, 61801, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Zhong</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>Metabolomics Center, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Champaign, IL, 61801, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Minocha</LastName>
<ForeName>Subhash C</ForeName>
<Initials>SC</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, University of New Hampshire, Durham, NH, 03824, USA. sminocha@unh.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>05</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Plant Biol</MedlineTA>
<NlmUniqueID>100967807</NlmUniqueID>
<ISSNLinking>1471-2229</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011073">Polyamines</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>2FZ7Y3VOQX</RegistryNumber>
<NameOfSubstance UI="D013096">Spermine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 4.1.1.17</RegistryNumber>
<NameOfSubstance UI="D009955">Ornithine Decarboxylase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>U87FK77H25</RegistryNumber>
<NameOfSubstance UI="D013095">Spermidine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>V10TVZ52E4</RegistryNumber>
<NameOfSubstance UI="D011700">Putrescine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D008401" MajorTopicYN="N">Gas Chromatography-Mass Spectrometry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055442" MajorTopicYN="N">Metabolome</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009955" MajorTopicYN="N">Ornithine Decarboxylase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011073" MajorTopicYN="N">Polyamines</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011700" MajorTopicYN="N">Putrescine</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013095" MajorTopicYN="N">Spermidine</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013096" MajorTopicYN="N">Spermine</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059467" MajorTopicYN="N">Transcriptome</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Genetic manipulation</Keyword>
<Keyword MajorTopicYN="Y">Metabolome</Keyword>
<Keyword MajorTopicYN="Y">Microarrays</Keyword>
<Keyword MajorTopicYN="Y">Ornithine decarboxylase</Keyword>
<Keyword MajorTopicYN="Y">Polyamines</Keyword>
<Keyword MajorTopicYN="Y">Populus</Keyword>
<Keyword MajorTopicYN="Y">Transcriptome</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>01</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>04</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>5</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>5</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>9</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27188293</ArticleId>
<ArticleId IdType="doi">10.1186/s12870-016-0796-2</ArticleId>
<ArticleId IdType="pii">10.1186/s12870-016-0796-2</ArticleId>
<ArticleId IdType="pmc">PMC4870780</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Jul 26;108(30):12527-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21709233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1981 Apr 1;195(1):71-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6272749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Nov;204(3):545-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25139797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Jul;167(1):143-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15948837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2005 Jan;56(410):219-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15618298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Jan;45(2):144-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16367961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Apr 6;107(14):6198-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20308540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2003 Mar;270(5):1014-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12603335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Aug;43(3):425-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16045477</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2004 Sep;161(9):989-1001</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15499902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2010 Mar;7(3 Suppl):S56-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20195258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2004 Dec;220(2):296-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15378367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2002 Dec;32 Suppl:490-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12454643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2009 Apr;47(4):262-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19136266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Apr;186(2):415-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20202130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2006 Aug;61(6):917-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16927204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Aug;147(4):2107-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18552234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2004 May;24(5):551-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14996659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gerontol A Biol Sci Med Sci. 2002 May;57(5):B189-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11983715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2013 Jun;54(6):990-1004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23574701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2008 Feb 8;366(2):275-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18023271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2007 Jul;20(7):816-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17601169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Methods. 2006 Jan 09;2:1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16401339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2007 Dec;131(4):599-613</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18251851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2010 Sep;48(9):764-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20619667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2010 May;231(6):1237-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20221631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Amino Acids. 2014 Mar;46(3):729-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24337930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2005;6(4):R34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15833121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Feb 1;102(5):1779-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15665094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Apr;128(4):1455-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11950994</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2007 Feb;6(2):480-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17269705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2010;10:150</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20637123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Amino Acids. 2012 Jan;42(1):295-308</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21082203</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Mar;22(3):623-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20354195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2005 Aug;43(8):729-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16122935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Feb 16;7:78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26909083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Amino Acids. 2010 Apr;38(4):1117-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19649694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Rep. 2014 Nov;41(11):7089-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25253097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2002 Jun;20(6):613-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12042867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Amino Acids. 2014 Mar;46(3):743-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24013280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2009 Apr;7(3):266-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19222808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Amino Acids. 2012 Feb;42(2-3):813-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21861167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2010 Apr;13(2):132-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20080055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 May 05;5:175</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24847338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2010 Oct;33(10):1742-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20525001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9909-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15197268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Apr;125(4):2139-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11299393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2010 Jul;48(7):612-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20552726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2002 Mar;18(3):490-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11934752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Jul;167(1):129-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15948836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2009 Aug 1;421(3):323-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19589128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2006 Apr;15(5):1275-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16626454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2010 Apr;35(4):220-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20060301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Sep;63(5):836-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20584149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2015 Jan 25;555(2):305-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25447912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Oct;40(2):173-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15447645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Amino Acids. 2010 Feb;38(2):405-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19956999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2004 Jun;45(6):712-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15215506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2010 Feb-Mar;48(2-3):136-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19962907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Chem Biomol Eng. 2013;4:259-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23540289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2003;4(4):210</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12702200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010;11:630</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21073700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2005;286:291-312</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15310929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2010 Jan;105(1):1-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19828463</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Page, Andrew F" sort="Page, Andrew F" uniqKey="Page A" first="Andrew F" last="Page">Andrew F. Page</name>
</noRegion>
<name sortKey="Cseke, Leland J" sort="Cseke, Leland J" uniqKey="Cseke L" first="Leland J" last="Cseke">Leland J. Cseke</name>
<name sortKey="Li, Zhong" sort="Li, Zhong" uniqKey="Li Z" first="Zhong" last="Li">Zhong Li</name>
<name sortKey="Minocha, Rakesh" sort="Minocha, Rakesh" uniqKey="Minocha R" first="Rakesh" last="Minocha">Rakesh Minocha</name>
<name sortKey="Minocha, Subhash C" sort="Minocha, Subhash C" uniqKey="Minocha S" first="Subhash C" last="Minocha">Subhash C. Minocha</name>
<name sortKey="Podila, Gopi K" sort="Podila, Gopi K" uniqKey="Podila G" first="Gopi K" last="Podila">Gopi K. Podila</name>
<name sortKey="Turlapati, Swathi A" sort="Turlapati, Swathi A" uniqKey="Turlapati S" first="Swathi A" last="Turlapati">Swathi A. Turlapati</name>
<name sortKey="Turlapati, Swathi A" sort="Turlapati, Swathi A" uniqKey="Turlapati S" first="Swathi A" last="Turlapati">Swathi A. Turlapati</name>
<name sortKey="Ulanov, Alexander" sort="Ulanov, Alexander" uniqKey="Ulanov A" first="Alexander" last="Ulanov">Alexander Ulanov</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001866 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001866 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:27188293
   |texte=   Genetic manipulation of putrescine biosynthesis reprograms the cellular transcriptome and the metabolome.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:27188293" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020